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Abstract 
The symmetry of superstructures is described by an 
ordinary three-dimensional space group, based on a 
unit cell which is a multiple of the basic structure 
unit cell. Alternatively, superstructures can be looked 
upon as commensurately modulated structures. Then, 
the structure is described by its basic structure plus 
some distortion wave. In this paper the application 
to superstructures of superspace groups, originally 
devised to describe the symmetry of incommensur- 
ately modulated structures, is discussed. The Bravais 
classes of superspace groups for commensurately 
modulated structures are derived. A comparison is 
made between the superspace group and the ordinary 
three-dimensional space-group description for com- 
mensurately modulated structures. With the help of 
the structure of Ago.35TiS2, the consequences for the 
interpretation of the diffraction pattern are discussed. 
Also, the nature and number of the independent 
parameters in the superspace-group approach are 
compared with the description of the structure by an 
ordinary space group. 

1. Introduction 
Modulated crystals are crystals with three- 
dimensional periodicity which have, in addition, 
some deviation from this periodicity. The distortion 
from the three-dimensional periodicity is itself peri- 
odic. However, the wavelength does not correspond 
to the basis vectors describing the translation sym- 
metry of the undistorted structure. 

The distortion wave can either be incommensurate 
or commensurate. In the latter case new, larger, basis 
vectors can be defined, which restore the three- 
dimensional translation symmetry. Incommensurate 
modulations are characterized by the fact that the 
wavelength of the distortion and the basis vectors of 
the undistorted structure do not have a common 
multiple. In that case the choice of a larger unit cell 
with three-dimensional periodicity is not possible. 

The modulation wave is defined by modulation 
functions for the constituent atoms. Each indepen- 
dent atom of the basic structure has its own indepen- 
dent modulation function. Displacive modulation 
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and occupational probability modulation are com- 
monly encountered. In crystals with displacive modu- 
lation the positions r~L of the atoms are given as the 

o (having three- sum of their average position r ,~ 
dimensional periodicity) and a periodic function 
which depends on the average position coordinates, 

o U~t o r~L=r~L+ (q.r~L), (1.1) 

o 0 with L a direct-lattice vector and where r~L = L + x ~ ,  
o determines the average position of the /z th  atom X~t 

in a unit cell. The modulation wave is characterized 
by its modulation wave vector q. Here, the case of a 
one-dimensional modulation is considered. Gen- 
eralization to more dimensions is easily performed 
(Janner, Janssen & de Wolff, 1983; van Smaalen, 
1985). The modulation function u ~' (q .r°t.) is periodic 
with a period of 1. An average occupation less than 
one is accounted for by an occupation probability 
P~L for each atomic site. In modulated structures the 
occupation probability is the sum of the average 
occupation probability pO and a modulation function 

.rOLL P~(q which is also a periodic function with a 
period of 1: 

Pgt. o 0 • rjzL). = P~ + P~(q (1.2) 

For incommensurately modulated structures the argu- 
o ment of the modulation functions, q.  r~L, assumes 

0 (mod 1) all values (modulo 1). {More precisely, q.  r~L 
is a dense set in the interval [0; 1] of the real numbers.} 
This means that any phase shift of the modulation 
functions gives a structure identical to the original 
one, but situated differently in space. In commensur- 
ately modulated structures the arguments (mod 1) of 
the modulation functions assume only a finite set (say 
N) of values. Equivalent three-dimensional struc- 
tures are then obtained only for a shift of the argument 
by a multiple of 1/N. Another phase shift produces 
a different structure. In this way there are infinitely 
many sets of N equivalent structures for one and the 
same set of modulation functions. 

The symmetry of a commensurately modulated 
structure can always be described by an ordinary 
three-dimensional space group through the proper 
choice of a larger unit cell. For the modulation func- 
tions having N different values, a unit cell with a 
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volume N times that of the unit cell of the basic 
structure will again have three-dimensional period- 
icity. 

Incommensurately modulated structures do not 
have three-dimensional periodicity and, therefore, 
cannot be described by a three-dimensional space 
group. A description of their symmetry by so-called 
superspace groups was developed by Janner, Janssen 
& de Wolff (1983). Superspace groups are space 
groups based on (3+ d) basis translations. The first 
three refer to the periodicity of the undistorted struc- 
ture. The d additional periodicities refer to the num- 
ber of independent modulation waves in the crystal. 
That is, they are translations of the arguments of the 
modulation functions (1.1) and (1.2). In this paper 
only the case d = 1 will be considered. 

In the original derivation of the application of 
superspace groups to modulated structures (de Wolff, 
1974; de Wolff, Janssen & Janner, 1981), the incom- 
mensurateness was considered to be an essential 
feature for this application to be possible. However, 
in their mathematical derivation of superspace 
groups, Janner & Janssen (1979) noted that incom- 
mensurateness of the modulation is not a necessary 
condition. This means that structures with a modula- 
tion wave vector which is a fraction of a reciprocal- 
lattice vector with a large denominator can be treated 
in the same way as truly incommensurately modulated 
structures. Structures in which the components of the 
modulation wave vector are simple fractions need a 
special treatment, because of the fact that one modu- 
lation function describes different modulated struc- 
tures, owing to the possibility of different phase shifts. 

The theory of superspace groups is now well estab- 
lished (Janner & Janssen, 1979; 1980a, b), and a 
tabulation of Bravais classes of superspace groups 
up to d = 3 (Janner, Janssen & de Wolff, 1983) and 
of all superspace groups for d = 1 (de Wolff, Janssen 
& Janner, 1981; Yamamoto, Janssen, Janner & de 
Wolff, 1985) is available. These tables contain only 
superspace groups for incommensurately modulated 
structures, i.e. at least one component of the modula- 
tion wave vector is unrestricted. If superspace groups 
are used to describe commensurately modulated 
structures, those superspace groups which have com- 
pletely commensurate wave vectors are also of inter- 

:est. It will appear that for these cases additional 
Bravais classes are needed. In § 2 these additional 
Bravais classes for d = 1 will be derived. 

As follows from the foregoing discussion, the sym- 
metry of a commensurately modulated structure can 
be described either by a superspace group or by an 
ordinary three-dimensional space group. In § 3 a com- 
parison of both descriptions will be made. As an 
example the modulated structures of Ago.35TiS2 will 
be discussed. It will be shown that a better description 
of the X-ray diffraction pattern is obtained by the use 
of superspace groups. Also, it will be shown that the 

superspace-group approach can lead to more restric- 
tions on the structural parameters than the three- 
dimensional space-group description. 

2. Bravais classes of superspace groups for commensur- 
ate modulations (d = 1) 

The set of all (3 + d)-dimensional superspace groups 
constitutes a subset of the (3 + d)-dimensional space 
groups. For a one-dimensional (d = 1) modulation 
with wave vector q, the relation restricting a space 
group to be a superspace group is (de Wolff, Janssen 
& Janner, 1981) 

R q - e q = G  (2.1) 

where G is a reciprocal-lattice vector of the basic 
three-dimensional reciprocal lattice. R is the 3D part 
of the orthonormal transformation in the superspace 
group and e is the fourth diagonal component. The 
superspace group is defined such that the angles of 
the fourth basis vector with the first three basis vectors 
are determined by the corresponding components of 
the modulation wave vector q. Because R is a 3D 
orthonormal transformation and (Re) forms a 
(3+ 1)D orthonormal transformation, the value of e 
is +1. 

A lattice is associated with each space group. A 
Bravais class of space groups is a set of space groups 
which have an equivalent lattice (International Tables 
for Crystallography, 1983). This equivalence relation 
can be expressed in terms of the point group describ- 
ing the symmetry of the lattice (holohedral point 
group). Two space groups belong to the same Bravais 
class if: (1) their holohedral point groups are related 
by a similarity transformation; (2) the orientation of 
the symmetry elements of the holohedral point group 
with respect to the lattice is the same. This latter 
condition is related directly to the occurrence of 
Bravais classes with a centred unit cell. 

For (3+d)-dimensional  superspace groups an 
analogous definition exists (Janner, Janssen & de 
Wolff, 1983). However, the admitted similarity trans- 
formations are now only those which obey the condi- 
tion given by (2.1). 

The complete set of Bravais classes of (3+1)-  
dimensional superspace groups can be obtained by 
consideration of the 3D Bravais classes. For each 
point group with a set of operators {R} and a corre- 
sponding set {e} of e values, such that {(Re)} forms 
a group, (2.1) gives the restrictions on the modulation 
wave vector q. Note that for the centred basis lattice 
only those vectors G are admitted which describe real 
reciprocal-lattice points. In general, it is possible that 
additional Bravais classes are generated by consider- 
ing also the 3D centrosymmetric point groups which 
are a subgroup of the holohedral point group. There 
is only one such Bravais class reported in the 
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literature: 

P31m (½½7), 
R 511 

no. 23 in Table 1 of de Wolff, Janssen & Janner (1981). 
In the tables of de Wolff, Janssen & Janner (1981) 

all Bravais classes of the (3 + 1)-dimensional super- 
space groups for incommensurately modulated struc- 
tures are given. That is, in those superspace groups 
at least one component of the modulation wave vector 
is unrestricted. Additional Bravais classes can occur 
when all components of the modulation wave vector 
become simple fractions. Of course, all components 
of the modulation wave vector then have particular 
commensurate values as determined by symmetry. 

There are two ways in which such additional 
Bravais classes may arise. First, the Bravais class may 
contain the operation (E l ) ,  where E is the identity 
operation. From (2.1), this gives as restriction for the 
modulation wave vector 

2q=G. (2.2) 
Therefore, if the components of the modulation wave 
vector are 0, ½ or 1, the operator (E l )  may be present. 
In the incommensurate superspace groups this 
operator is never present. However, as can easily be 
derived, the effect of the operator (E 1) on the modu- 
lation functions (1.1) and (1.2) is the same as the 
effect of the identity, (E 1), in the superspace group. 
Therefore, this operator does not introduce additional 
symmetry of the structures, and I will not give the 
additional Bravais classes which arise by the introduc- 
tion of (El ) .  The above-mentioned case occurs when 
in a Bravais class of incommensurate (3+1)- 
dimensional space groups the components of the 
modulation wave vector all assume particular rational 
values. 

It is also possible that the components of the wave 
vectors of a two- or higher dimensional incommensur- 
ate modulation all become commensurate, and result 
in a one-dimensional modulated structure. This is the 
second possibility for the occurrence of additional 
Bravais classes. The totally commensurate wave vec- 
tor represents a special point in the unit cell. These 
Bravais classes are indeed new, and such superspace 
groups can be used to describe the symmetry of com- 
mensurately modulated structures, for which there is 
no appropriate superspace group amongst the incom- 
mensurate superspace groups.* 

As an example we will derive the (3 + 1)D Bravais 
classes for Immm basic lattice symmetry and discuss 
this case also for commensurate structures. Let the 
modulation wave vector be given by its components 

* T. Janssen has pointed out to me that the Bravais classes of 
(3 + 1)-dimensional superspace groups, both incommensurate and 
commensurate, are isomorphous to the four-dimensional general- 
ized magnetic point groups. See Janssen (1969). 

(a,/3, 7), q = a a * + f l b * +  7c*. For each 3D operation 
and any of the values e = ±1 the difference ( R q - e q )  
can be calculated. For each choice of e values, restric- 
tions on the components (a, fl, 7) are then obtained 
with (2.1). Note that for the /-centred basic lattice 
the reciprocal lattice is face centred, so that the admit- 
ted G vectors are linear combinations of (110), (101) 
and (011). When it is realized that, for example, 
(mxl)(mvl)(mzl) is equivalent to (mxl)(myl)(mzl) 
etc., we are left with four different sets of e values. 
The restrictions on q give the Bravais classes of super- 
space groups. 

For (mxl)(myl)(mzl) one obtains 

Immm 
P 

1 1 5  

with q = (007), no. 12 in Table 1 of de Wolff, Janssen 
& Janner (1981). 

Both the combinations (mxl)(myl)(mzS) and 
(m,,1)(myl)(m~l) give as restrictions that (a, fl, 7) 
should all be integers. The only new Bravais class of 
interest is given by q = (001), which corresponds to a 
loss of centring of the basic lattice. However, for this 
wave vector ( E l )  is also a symmetry operation, and 
both point groups are in fact different subgroups of 
the holohedral point group (mxl)(myl)(mzl)(E1). 
Another subgroup of this point group is (mxl)- 
(m:. 1 )(mzl), which corresponds to the incommensur- 
ate superspace Bravais class 

Immm 
P 

l i T "  

As pointed out earlier, the operator (E l )  is equivalent 
to the identity operator (for this particular wave vec- 
tor), and all superspace-group symmetry can be 
described by the incommensurate Bravais class. No 
new Bravais class need be considered. 

The last possibility is given by (mxl)(myS)(mzl), 
which leads to the restrictions a, fl, y each ±1/2. The 
wave vector q -- (½, ½, ½) is not contained in the tables 
of de Wolff, Janssen & Janner (1981). Now a new 
Bravais class does occur: 

Immm T - - -  (½1, ~). 
1 1 1  

The prefix T is used here as an indication of a totally 
commensurate modulation. 

A derivation of all Bravais classes of (3 + 1)D super- 
space groups was performed accordingly. This leads 
to seven Bravais classes for commensurately modu- 
lated structures, given in Table 1. 

3. The relation between space-group symmetry and 
superspace-group symmetry 

It is always possible to separate the modulation wave 
vector into a part for which the components have 
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Table 1. Bravais classes of  (3 + 1)D superspace groups 
for totally commensurate modulated structures 

Column one: number of Bravais class; column two: symbol of 
Bravais class; column three: transformation to larger unit cell with 
q'=q'~= 0; column four: conditions limiting possible reflections 
and conditions determining the value of m. To be present, a 
reflection HKL has to fulfil the given condition. Column five: the 
components of  the commensurate modulation wave vector. 

Orthorhombic  

I m m m  
1 T 

1 1 1  

Tetragonal  

2 T 1 4 / m m m  

1 111  

Cubic 
Pm~rn 

3* T __  
111 

Im3 m 
4 T _ _  

111 

lm3m 
5* T _ _  

111 

Hexagonal  

P 6 /  m m m  
6 T _ 

1 1 i l  

P 6 /  m m m  
7 T _ 

1 1 1 1  

H = 2 h + m  H - m = 2 n  
K = 2 k + m  H - K = 2 n '  t i t  

L = 21+ m H -  L =  2n" 

H = 2 h + m  H - m = 2 n  
K = 2 k + m  H - K = 2 n '  l i t  

L = 21+ m H - L = 2n" 

H = 2 h + m  H - m = 2 n  
K = 2 k + m  H - K = 2 n '  i t 1  

L =  21+ m H -  L =  2n" 

H = 2 h + m  H - m = 2 n  
K 2 k + m  H - K = 2 n '  111 = ~.~. 
L = 2 1 + m  H - L = 2 n "  

H = 2 h + m  H - m = 2 n  1 0 0  

H = 2 h + k + m  
H - K - m  = 3 n  i i 0 ~g 

K = - h + k  

H = 2 h + k + m  H - K - m = 3 n  t 1 t 
K = - h + k  L - m = 2 n '  ~ 
L = 2 1 + m  

* These Bravais classes have in addi t ion the symmetry opera t ion ( E l ) .  

rational values as forced by symmetry and a part for 
which there are no symmetry restrictions on those 
components. The first part forms the vector qr, the 
second part forms the vector q~, such that (de Wolff, 
Janssen & Janner, 1981) 

q = q ~ + q , .  (3.1) 

To analyse the diffraction pattern, or to calculate 
symmetry restrictions on the modulation function, it 
is convenient (de Wolff, Janssen & Janner, 1981) to 
describe a modulated structure in a larger unit cell, 
such that in this larger unit cell qr = 0. The advantage 
of the use of this larger unit cell is easily seen if one 
realizes that when qr = 0 the vector G is zero for all 
operations (Re) [equation (2.1)]. Only then do the 
(3+ 1)D orthonormal transformations assume their 
simplest form as a direct sum of a 3D operator R and 
a 1D operator e = + 1. In this larger unit cell centring 
translations are present. Because the cell transforma- 
tion was performed to get rid of the rational part (q~) 
of the modulation wave vector, the centring transla- 
tions have a non-zero fourth component and at least 
one of the first three components is different from 
zero. 

For the Bravais classes of totally commensurate 
superspace groups, derived in § 2, qi = 0. Therefore, 

the larger unit cell is exactly the one used in the 
ordinary description by 3D space groups. The 
difference between the space-group description and 
the superspace-group description is expressed by the 
presence of centring translations in the latter case. 
Because the 3D part of the larger superspace unit cell 
is equal to the unit cell in ordinary space, this cell is 
convenient to make a comparison between super- 
space-group symmetry and space-group symmetry. In 
the case of a commensurate vector qi, with a short 
period (e.g. 2 or 3), the description by a larger unit 
cell with q = 0 will also be convenient. 

To obtain a general picture of the relation between 
the superspace group and the space group, consider 
a (3+ 1)D superspace-group operator, 

(Re~'l 'F2 "/ '3 'F4)" (3.2) 

The translations in superspace are given by R = 
identity, e = +1 and zi integers. The other operators 
have R ~ identity and may have fractional values for 
the ~'i (glide planes etc.). The 3D space group is a 
subgroup of the superspace group. Therefore, all 
space-group operators are contained in the set of 
superspace-group operators. The condition for a 
superspace-group operator to be a space-group 
operator is (Yamamoto & Nakazawa, 1982; 
Yamamoto,  1984) 

q .  a-'= z4, (3.3) 

with , r ' = ( z l ,  ~'2, z3). In the larger unit cell q = 0 ,  
leading to the simpler condition 

~-4= 0. (3.4) 

Consideration of all superspace-group operations 
(including the centring translations) will then lead to 
the set of 3D operators and subsequently to the 3D 
space group. 

3D space is a section of the supercrystal perpen- 
dicular to the internal coordinate axes (van Smaalen, 
1985; de Wolff, Janssen & Janner, 1981). For com- 
mensurate modulations different sections refer to 
different 3D structures. This difference in structure 
is, in part, reflected in the 3D space group. Operators 
with e = + 1 have a z4 value independent of the choice 
of the origin along a4; they will be operators of the 
3D space group or not, independent of the choice of 
origin, i.e. independent  of the section chosen. For 
operators with e = - 1  the value of T4 depends on the 
choice of the origin along a4. Therefore, these 
operators can be part of the space group only for a 
finite set of 3D structures. The following picture is 
now obtained. For commensurately modulated struc- 
tures the supercrystal corresponds to an infinite set 
of different 3D structures, all being described by one 
and the same superspace group. Which particular 
section represents the real 3D structure has to be 
determined in the structure determination. Expressed 
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in a different way, the phase of the modulation wave 
is a parameter which has to be determined in order 
to obtain the real 3D structure. For practically all 
sections, the same 3D space group is obtained, which 
corresponds to the operators with e - -+  1. The phase 
of the modulation wave then corresponds to a free 
parameter in the 3D space-group description too. 
However, for a restricted set of sections the operators 
with e = - 1  are also present in the 3D space group. 
As a consequence, for these structures the 3D sym- 
metry is higher than for the others. In this way, a 
knowledge of the 3D space-group symmetry can be 
used to determine the phase of the modulation wave. 

We will illustrate the importance of the superspace- 
group description by the example of Ago.35TiS2. At 
room temperature, Ag0.35TiS2 crystallizes (Gerards, 
Roede, Haange,  Boukamp & Wiegers, 1984/1985) in 
space group P 3 m l ,  belonging to the Bravais class 
P6/mmm.  On lowering the temperature, new reflec- 
tions occur in the diffraction pattern at positions mq, 
with q = ½a* +~b* +½e* and m an integer, meaning 
that a commensurately modulated structure has 

/ l l l~  
developed with a modulation wave vector q = k332/. 

The symmetry of the reciprocal lattice remains 
6/mmm. The (3+ 1)D Bravais class is therefore 

r P 6 / m m m  ~ , ,  

1 1 1 1 ( l l l~ 

no. 7 in Table 1. The superspace group compatible 
with the observed diffraction pattern and the average 
structure is 

T l ~ m l  t111~ 

(van Smaalen, Bronsema & Wiegers, 1987). 
3D periodicity is restored by the choice of a larger, 

x /3axx /3a×2c ,  unit cell (Fig. 1). The 3D Bravais 
class of the modulated structure is again P6/mmm.  
The space group of the superstructure was reported 
to be P31c (Gerards et al., 1984/1985). Note the 
different orientation of the mirror planes with respect 
to the translation vectors in 3 m 1 and 31 m symmetry 
(Fig. 1). 

Careful analysis of the diffraction pattern shows 
that the extinction condition corresponding to the c 
glide is only approximately fulfilled. Therefore, the 
true space group is P3 or P3. The assignment of the 
(3 + 1)D superspace group is independent of the pres- 
ence of the extinction condition representing the 3D 
c glide. In fact, 3D symmetries P3 and P31c corre- 
spond to the different sections of the supercrystal 
mentioned previously. 

The larger unit cell with q, = q  = 0 is exactly that 
of the 3D space group of the modulated structure. 
Because in this larger unit cell q = 0, the position of 
each reflection is given by only three indices HKL. 
In the superspace group each reflection has a fourth 

index, m, determining the order of the satellite. The 
relations defining the value of re,for each reflection 
HKL are given in the fourth column of Table 1. Note 
that in the incommensurate case (with qi # 0) these 
relations are extinction conditions limiting possible 
reflections. For Bravais class no. 7 these relations are 
(n, n' integers) 

m =  H - K  +3n 
(3.5) 

m =  L+2n' .  

Now the approximate presence of the c glide can be 
understood, because the nearly extinct reflections 
HHL with L odd are third-order satellites and are 
therefore expected to be weak. In fact, Gerards et al. 
(1984/1985) have already noted that all HKL reflec- 
tions with H - K  = 3n and L odd are very weak or 
absent. These reflections are precisely the third-order 
satellites. 

The advantage of the superspace-group description 
for commensurately modulated structures is best 
illustrated by considering the number of independent 
parameters needed to describe the structure. The 
space-group description has the positions of the 
atoms as independent parameters. Consideration of 
only the translation symmetry gives for the super- 
structure N times the number of parameters of the 
average structure, when an N-fold supercell is 
needed. In the superspace-group description the par- 
ameters are those of the average structure plus the 
amplitudes of a finite number of harmonics of the 
modulation functions. It can easily be shown that the 
number of parameters is the same in both descrip- 
tions. However, the introduction of the rotational 
symmetry reduces the number of independent param- 
eters. For a 3D symmetry not referring to a special 
section of the supercrystal (see previous paragraphs), 
the number of independent parameters in the 3D 
description will be larger than or equal to the number 
of independent parameters obtained with the super- 
space group. Only in the case of a 3D symmetry 

a/ 
8 , - m  

i/1 

m 

Fig. 1. Projection along e of the unit cell of Ago.35TiS2. Shown 
are the unit cell (a, b) of the average structure and the ,/3a x 
x/3a x 2c supercell (A, B). Also indicated are the mirror planes 
present in this structure. 
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belonging to a particular section may the 3D space 
give rise to more restrictions. In the superspace-group 
description the phase of the modulation function is 
free and gives rise to a number of independent param- 
eters in the modulation functions. The 3D symmetry 
corresponds to a particular phase. Consequently, 
knowledge of the 3D space group can be used to 
determine this phase. Taking this into account, the 
(3 + 1)D superspace-group description gives an equal 
or smaller number of independent parameters than 
the space-group description. 

The example of Ago.asTiS 2 corresponds to such a 
unique section of superspace. The approximate 3D 
space group P31c has the same number of indepen- 
dent parameters as the superspace group 

TP3 -ml  ,ili, 
1 1 1 k332]. 

However, for an accurate description of the structure, 
taking into account also the nearly extinct reflections, 
the space group P3 should be used. Then many more 
parameters are needed to describe the structure in 
the three-dimensional space group than in the super- 
space group with a free phase of the modulation wave 
(van Smaalen, Bronsema & Wiegers, 1987). Another 
example is the case of Ko.sVsS8 (Bronsema, 1985), 
where the superspace group also gives a description 
with a smaller number of parameters. 

Another advantage of the superspace-group 
description is that the new independent parameters 
represent in a natural way the order parameters in 
Landau theory (Perez-Mato, Madariaga & Tello, 
1984). This holds also for commensurate modula- 
tions. It enables one to discriminate between more- 
important (first-order) and less-important (second- 
order and higher) parameters describing the modula- 
tion. In the space-group description of the modulated 
structure no relation exists between the independent 
parameters and the way the structure distorts. These 
effects are discussed in detail for the case of Ago.a5TiS 2 
in a following publication (van Smaalen, Bronsema 
& Wiegers, 1987). 

4. Summary and concluding remarks 

In this paper the consequences of the superspace- 
group description for commensurately modulated 
structures are discussed. 

In § 2 the Bravais classes of (3+1)D superspace 
groups are derived which apply to commensurate 
modulations only. These Bravais classes are not given 
by de Wolff, Janssen & Janner (1981), who gave only 
Bravais classes of superspace groups for incom- 
mensurately modulated structures. 

For incommensurately modulated structures, a 
superspace group for a given basic structure and a 
given modulation wave vector correspond to one set 
of ordinary 3D operators (the latter not forming a 
3D space group, because of the incommensurateness). 
For commensurately modulated structures there are 
several 3D space groups possible for the 3D structure. 
The different space groups correspond to different 
phases of the modulation wave. It is shown that in 
many cases the superspace-group description leads 
to a reduction of the number of independent param- 
eters compared with an ordinary space-group 
description. 

The superspace-group approach leads to a better 
understanding of the diffraction pattern. Reflections 
which are very weak or absent can be indexed as 
higher-order satellites, which are expected to be weak. 
This observation, together with the superspace-group 
description of the structure, enables one to determine 
the parameters (higher-order harmonics) responsible 
for the intensity at these points. 

It is argued that there is a close relation between 
the stiperspace-group approach and the order param- 
eters in the Landau theory of phase transitions. 
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